Predicted Signal Contours:

41 17 41 - CH 220 - Defiance, OH 84 23 24 - P.B.F.O.N.W.O.

ERP = 6 kW	, 7.782	dBk FM	- 2-6 Tal	oles	
Radial	TAAH	kW	dBk	Field	60 dBu.5
0 Down			7 204		26.0
0 Degs. 10 Degs.	94.5M 94.5M	5.350 6.000	7.284 7.782	0.944 1.000	26.8 27.5
20 Degs.	94.5M 90.7M	6.000	7.782	1.000	27.0
30 Degs.	88.4M	6.000	7.782	1.000	26.7
40 Degs.	87.4M	6.000	7.782	1.000	26.5
50 Degs.	89.0M	6.000	7.782	1.000	26.8
60 Degs.	93.8M	6.000	7.782	1.000	27.4
70 Degs.	94.5M	6.000	7.782	1.000	27.5
80 Degs.	95.5M	6.000	7.782	1.000	27.7
90 Degs.	99.5M	6.000	7.782	1.000	28.2
100 Degs.	94.1M	6.000	7.782	1.000	27.5
110 Degs.	91.5M	6.000	7.782	1.000	27.1
120 Degs.	88.6M	6.000	7.782	1.000	26.7
130 Degs.	88.4M	6.000	7.782	1.000	26.7
140 Degs.	90.0M	6.000	7.782	1.000	26.9
150 Degs.	90.7M	6.000	7.782	1.000	27.0
160 Degs.	92.1M	6.000	7.782	1.000	27.2
170 Degs.	93.2M	6.000	7.782	1.000	27.4
180 Degs.	94.5M	6.000	7.782	1.000	27.5
190 Degs.	94.5M	6.000	7.782	1.000	27.5
200 Degs.	94.5M	6.000	7.782	1.000	27.5
210 Degs.	94.5M	6.000	7.782	1.000	27.5
220 Degs.	94.5M	6.000	7.782	1.000	27.5
230 Degs.	94.5M	6.000	7.782	1.000	27.5
240 Degs.	94.5M	5.350	7.284	0.944	26.8
250 Degs.	94.5M	3.376	5.284	0.750	24.2
260 Degs. 270 Degs.	94.5M	2.130	3.284	0.596	21.8
270 Degs. 280 Degs.	94.5M 94.5M	1.344	1.284	0.473	19.5
290 Degs.	94.5M	1.000 0.794	0.000 -1.000	0.408 0.364	18.0 16.9
300 Degs.	94.5M	0.794	-1.700	0.336	16.2
310 Degs.	94.5M	0.794	-1.000	0.364	16.2
320 Degs.	94.5M	1.000	0.000	0.408	18.0
330 Degs.	94.5M	1.344	1.284	0.408	19.5
340 Degs.	94.5M	2.130	3.284	0.596	21.8
350 Degs.	94.5M	3.376	5.284	0.750	24.2

Ave. HAAT= 93.2M, Ant. COR= 307.9M AMSL

Statement of qualifications of the preparer:

I, Doug Vernier, declare that I have studied engineering at the University of Michigan and have received degrees from the University in Broadcast Telecommunications. That I have been active in broadcast consulting for over 20 years;

That, I have held a Federal Communications Commission First Class Radiotelephone License continually since 1964. In 1985 this license was reissued by the Commission as a lifetime General Radiotelephone license no. PG-16-16464;

That, I am certified as a Professional Broadcast Engineer (#50258) by the Society of Broadcast Engineers, Indianapolis, Indiana.

That, my qualifications are a matter of record with the Federal Communications Commission;

That, I have been retained by the Public Broadcasting Foundation of Northwest Ohio, Toledo, Ohio to prepare the engineering showings and the technical exhibits appended hereto;

That, I do swear that the technical information contained in same and the facts stated therein are true of my knowledge.

Douglas L. Vernier

January 31, 1995

<---- 100M AG, 313.4M AMSL

<---- 97.75M AG, 311.15M AMSL

94.5M AG, 307.9M AMSL, 93.2M HAAT (Proposed COR)

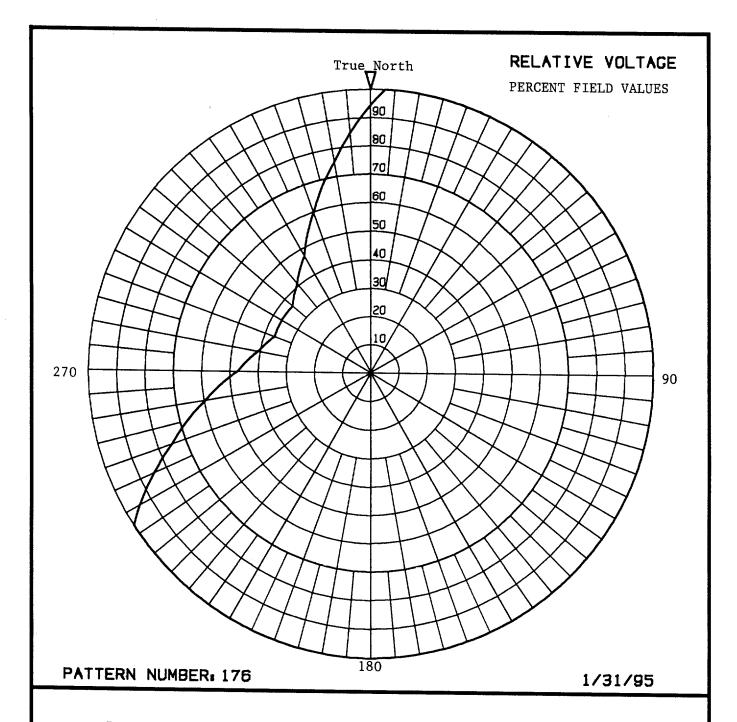
<---- 91.25M AG, 304.65M AMSL

<---- 61M AG, 274.4M AMSL, (STL COR)

GROUND ELEVATION = 213.4M

VERTICAL SKETCH

N. Lat. 41 17 41 W. Lng. 84 23 24


Steel guyed tower - A3

(Not to Scale)

EXHIBIT #E2

CH 220 - 6 kW DA 93.2 M HAAT Public Broadcasting Foundation of N.W. Ohio Jan. 1995

DOUG VERNIER
BROADCAST CONSULTANT
1600 PICTURESQUE DR.
CEDAR FALLS, IA 50613
319 266-8402

Public Broadcasting Foundation of North West Ohio

Maximum Power = 6 kW
DIRECTIONAL CUSTOM COMPOSITE PATTERN

Doug Vernier - Telecommunications Consultants 1600 Picturesque Dr. Cedar Falls, IA 50613

319 266-8402

Pattern #176

Public Broadcasting Foundation of North West Ohio

Maximum Power = 6 kW DIRECTIONAL CUSTOM COMPOSITE PATTERN

Doug Vernier - Telecommunications Consultants 1600 Picturesque Dr. Cedar Falls, IA 50613

319 266-8402

Azimuth	Relative Voltage	dBK	ERP
0	0.944	7.3	5.35kw
5	1.000	7.8	6.00kw
10	1.000	7.8	6.00kw
15	1.000	7.8	6.00kw
20	1.000	7.8	6.00kw
25	1.000	7.8	6.00kw
30	1.000	7.8	6.00kw
35	1.000	7.8	6.00kw
40	1.000	7.8	6.00kw
45	1.000	7.8	6.00kw
50	1.000	7.8	6.00kw
55	1.000	7.8	6.00kw
60	1.000	7.8	6.00kw
65	1.000	7.8	6.00kw
70	1.000	7.8	6.00kw
75	1.000	7.8	6.00kw
80	1.000	7.8	6.00kw
85	1.000	7.8	6.00kw
90	1.000	7.8	6.00kw
95	1.000	7.8	6.00kw
100	1.000	7.8	6.00kw
105	1.000	7.8	6.00kw
110	1.000	7.8	6.00kw
115	1.000	7.8	6.00kw
120	1.000	7.8	6.00kw
125	1.000	7.8	6.00kw
130	1.000	7.8	6.00kw
135	1.000	7.8	6.00kw
140	1.000	7.8	6.00kw
145	1.000	7.8	6.00kw
150	1.000	7.8	6.00kw
155	1.000	7.8	6.00kw
160	1.000	7.8	6.00kw
165	1.000	7.8	6.00kw
170	1.000	7.8	6.00kw
175	1.000	7.8	6.00kw

Pattern #176

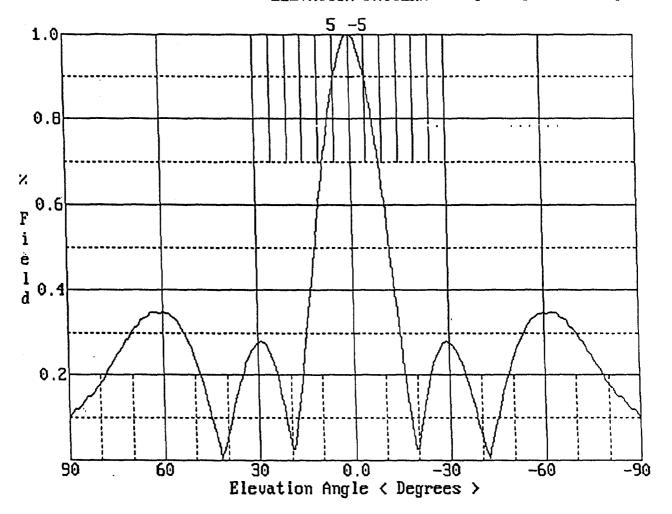
Public Broadcasting Foundation of North West Ohio

Maximum Power = 6 kW DIRECTIONAL CUSTOM COMPOSITE PATTERN

Doug Vernier - Telecommunications Consultants 1600 Picturesque Dr. Cedar Falls, IA 50613

319 266-8402

Azimuth	Relative Voltage	dBK	ERP
100			
180	1.000	7.8	6.00kw
185	1.000	7.8	6.00kw
190	1.000	7.8	6.00kw
195	1.000	7.8	6.00kw
200	1.000	7.8	6.00kw
205	1.000	7.8	6.00kw
210	1.000	7.8	6.00kw
215	1.000	7.8	6.00kw
220	1.000	7.8	6.00kw
225	1.000	7.8	6.00kw
230 235	1.000	7.8	6.00kw
235	1.000	7.8	6.00kw
240	0.944	7.3	5.35kw
245	0.847	6.3	4.30kw
250 255	0.750	5.3	3.38kw
255	0.673	4.3	2.72kw
260	0.596	3.3	2.13kw
265	0.535	2.3	1.71kw
270	0.473	1.3	1.34kw
275	0.440	0.7	1.16kw
280	0.408	-0.0	999w
285	0.386	-0.5	894w
290	0.364	-1.0	795w
295	0.365	-1.0	799w
300	0.366	-0.9	804w
305	0.365	-1.0	799w
310	0.364	-1.0	795w
315	0.386	-0.5	894w
320	0.408	-0.0	999w
325	0.440	0.7	1.16kw
330	0.473	1.3	1.34kw
335	0.535	2.3	1.71kw
340	0.596	3.3	2.13kw
345	0.673	4.3	2.72kw
350	0.750	5.3	3.38kw
355	0.847	6.3	4.30kw



6340 Sky Creek Drive, Sacramento, California 95828 P.O. Box 292880, Sacramento, California 95829-2880 (916) 383-1177 FAX (916) 383-1182

Bays : 3

ELEVATION PATTERN

JAMPRO ANTENNAS INC. Spacing (Wavelength): 1.00

JAMPRO ANTENNAS INC.

6340 Sky Creek Drive, Sacramento, California 95828 P.O. Box 292880, Sacramento, California 95829-2880

(916) 383-1177 FAX (916) 383-1182

TABLE OF FIELD STRENGTH FOR : JHPC3.PMT

INCREMENTAL DEGREES

		0	1	2	3	4	5	6	7	8	9
	+	1.000	.996	.984	.955	.928	.893	.853	.798	.746	.689
	-	1.000	.996	.984	.955	.928	.893	.853	.798	.746	.689
D	-10	.628	.558	.487	.420	.349	.279	.213	.147	.085	.026
E	-20	.028	.078	.123	.162	.195	.225	.247	.263	.276	.281
G	-30	.280	.274	.260	.246	.227	.203	.178	.151	.120	.090
R	-40	.059	.026	.006	.038	.070	.101	.132	.161	.189	.215
E	-50	.240	.259	.280	.294	.310	.319	.332	.336	.345	.345
E	-60	.350	.346	.348	.348	.348	.337	.334	.331	.317	.311
s	-70	.305	.288	.281	.263	.255	.246	.227	.218	.209	.189
	-80	.179	.170	.160	.150	.150	.140	.130	.120	.120	.110
	-90	.100									

6340 8ky Creek Drive, Sacramento, California 95828 P.O. Box 292880, Sacramento, California 95829-2880 (918) 383-1177 FAX (918) 383-1182

CIRCULARLY POLARIZED DIRECTIONAL FM ANTENNA

ANTENNA MODEL:

PATTERN ENVELOPE

JAMPRO proposes to custom build and directionalize a standard FM side mount antenna to meet this stations needs. The final patterns of the HPOL and VPOL will remain within the given pattern envelope.

DESCRIPTION OF TEST

JAMPRO will build or utilize an exact duplicate of the support structure for testing, paying close attention to details, such as including other structures present, such as climbing steps, feed lines etc.

JAMPRO will perform all testing in full scale on our full scale test range. JAMPRO will add parasitic's to the environment to manipulate the pattern to meet all requirements. All brackets and parasitic's will be hot dipped galvanized steel to ensure good contact and long life.

JAMPRO will provide a final certification and complete installation drawings of the system when all work is completed. Customer is instructed to follow all mounting instructions and have a licensed surveyor verify the heading of the antenna boom.

All testing will be under the direct supervision of Eric Dye, JAMPRO's full time staff engineer. He holds a Masters of Science Degree in Electrical Engineering, and has been developing and designing directional FM arrays for over 5 years.

RULE COMPLIANCE

JAMPRO will comply with all known FCC rules including those stated directly on the stations construction permit. The rules include the following:

The licensed ERP will not be exceeded at any heading

The rms of the Vpol will not exceed the rms of the Hpol.

The maximum to minimum signal will not exceed 15 dB

JAMPRO will attempt to fill the 85% rms requirement

8340 Sky Creek Drive, Sacramento, California 95828 P.O. Box 292880, Sacramento, California 95829-2880 (916) 383-1177 FAX (916) 383-1182

MOUNTING CONSIDERATIONS

JAMPRO instructs that no other antennas are mounted within the appeture of the directional array. A minimum vertical spacing of 10' should be kept for antennas mounted on the same mounting structure. The tower and all cables, steps, etc should be properly RF grounded.

Since directional antenna systems include parasitic reflectors and special bracketing, standard weights and windloads should not be used. Contact JAMPRO for estimated weights and windloads on this antenna.

CONCLUSION

JAMPRO ANTENNAS, INC. carefully follows sound engineering principles in all aspects of developing an FM directional antenna. Over 35 years of experience goes into the design of each system. The customer or his engineer are welcome to be on site during the testing, contact factory for scheduling.

Exhibit #E4

REQUEST FOR WAIVER

The Public Broadcasting Foundation of Northwest Ohio requests a waiver of 47 C.F.R. Section 73.1125 in order to use the existing studio location of WGTE-FM in Toledo, Ohio as the main studio location of the proposed station in Defiance, Ohio. This would locate the main studio outside the proposed station's principal community contour.

The justification for this request is that the Defiance community and surrounding area's population is too small to support a fully-staffed and independently programmed 24-hour public radio station, but sufficiently large to support an economical satellite public radio transmitter. The programming will be delivered to the Defiance station through an intercity microwave relay system. This includes the ability to insert local programming as warranted into the Defiance station's broadcast. A remote broadcast pickup system and vehicle is already available for local program origination.

The Public Broadcasting Foundation of Northwest Ohio regularly assesses community needs and problems through the analysis of audience mail, telephone response and inquiries, content of public service announcements, informal surveys, Community Advisory Board meeting and careful attention to local news media coverage from divergent sources and viewpoints. A member of our Board of Trustees is also a Defiance area native and has provided invaluable assistance in strengthening community ties and moving this project forward. The Foundation will maintain a toll free wats line that is available to the Defiance community.

Although the main studio location of the proposed Defiance station is outside the principal community contour, the Foundation believes it has the experience, resources, and firm commitment to provide a comparable or better level of service to the community as would a local main studio facility.

EXHIBIT #E5 Intermodulation Interference

January 1995

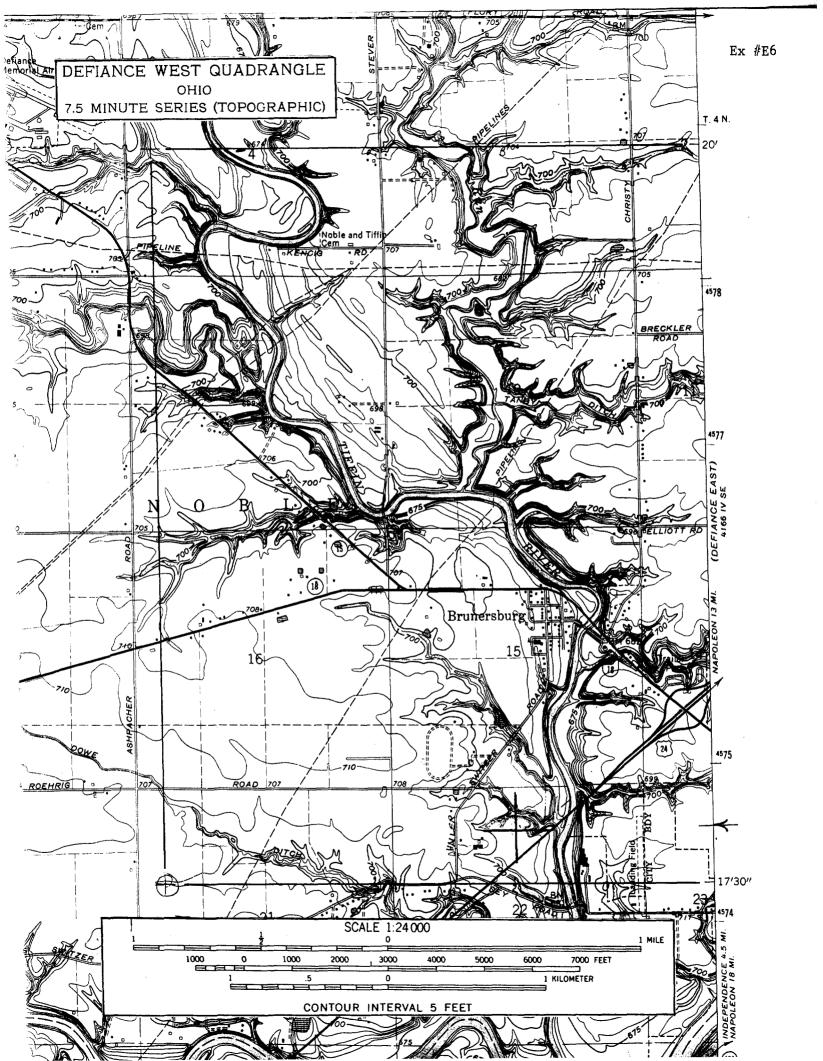
Concerning the Application of the Public Broadcasting Foundation of Northwest Ohio

Defiance, Ohio

The 115 dBu blanketing contour of the proposed facility falls within 965 meters from the proposed 6.0 kW directional antenna in its maximum lobe. The area within this contour is predominantly rural. There is a cable head-end within ten kilometers but outside the blanketing contour. Little no blanketing interference is anticipated.

There are no TV or LPTV stations within 10 kilometers of the proposed facility.

There is one FM station within ten kilometers:


WZOM CH 290A Defiance, OH 3.0 kW 100M 8.04 km 172 Deg T. WZOM (CP) CH 289A Defiance, OH 6.0 kW 100M 8.04 km 172 Deg T.

There is a directional AM station within ten kilometers:

WONW Defiance, OH 1280 kHz, 1 kW D, .5 kW N

Since the directional AM station is within 2 miles from the proposed FM tower site, the Public Broadcasting Foundation of Northwest Ohio understands its obligations under the rules to cover the cost of a pattern performance proof (and corrective action if necessary) to establish the integrity of the AM station's pattern after the proposed tower is erected.

The Public Broadcasting Foundation of Northwest Ohio is also aware of its responsibility under the rules to correct objectionable blanketing and intermodulation interference by the use of filters or other means, at its own expense, within the period of one year from commencement of broadcasting from the proposed transmitter site.

01-31-1995

DOUG VERNIER

319 266-8402

CH# 220A - 91.9 MHz

Public Broadcasting Foundation of N.W. Ohio

INTERFERENCE CHECKS WITH TBA, DEFIANCE, OH at N. LAT. 41 17 41 W. LNG. 84 23 24

PWR = 6 kW DA H.A.A.T. = 93.2 M C.O.R. = 308 M AMSL

Protected F(50-50) 60 dBu = 27.37 km

F(50-10) 40 dBu = 85.5 54 dBu = 42.29 80 dBu = 8.77 100 dBu = 2.67 F(50-10) 37 dBu = 97.06 51 dBu = 50.19 77 dBu = 10.42 97 dBu = 3.21 F(50-10) 34 dBu = 111.35 48 dBu = 58.32 74 dBu = 12.3 94 dBu = 3.87

CH# CALL CITY		BEARING DISTANCE LAT.	PWR(kW) INT(km) PRO(km) HAAT(M) COR(M) FILE #
217B WGTEFM Toledo	LI CN 56.8 34.8 OH Public B/C Foundation of N	62.9 89.60 km 41 39 27 242.9 55.67 Mi 83 25 55	
219B WUOM *	LI CN 5.0 21.4	17.5 129.65 km 42 24 24	93.00 97.49 66.25
Ann Arbor	MI The Regents of the Univ. o		234.5* 513 BLED800527AI
	:. NGTED, SHORT-SPACED ALLOC GRA at 17.5 degrees = 92 M, Pwr.= 6 kW		. contour = 42.03 km
220A WVSH *	LI HN 36.6 7.2	244.9 104.22 km 40 53 32	0.92 40.07 11.27
Huntington	IN Huntington County Communit	64.9 64.76 Mi 85 30 38	39.3* 279 BLED774
> Reference HAAT	at 244.9 degrees = 94.6 M, Pwr.= 6	kW, Pro. contour = 27.56 km,	Int. contour = 85.74 km
220A WQKO.C*	CP ZCN 0.7 12.3	296.5 89.61 km 41 38 59	3.00 72.49 22.07
Howe	IN Maranatha Christian Fellow	116.5 55.68 Mi 85 21 12	82.6* 375 BPED910320MA
	posed to Canada as B1 on 911220-Acc at 296.5 degrees = 94.6 M, Pwr.= .	•	o.45 km, Int. contour = 55.22 km
221A WCSRFM	LI CN 72.0 R 1.3 M	343.9 73.27 km 41 55 41	6.00 36.87 24.38
Hillsdale	MI WCSR, Inc.	163.9 45.53 Mi 84 38 10	74.0 411 BLH910918KB
FCC Comment > Cla	ss B1 with respect to Canada-Accept	ed by Canada 901108	
221A WZOQ	LI CN 72.0 R 2.7 M	161.9 74.66 km 40 39 20	3.00 35.97 23.95
Wapakoneta	OH WZO9, Inc. epted by Canada on 931004	341.9 46.39 Mi 84 06 54	100.0 378 BLH850510KC
ruc comment > Acc	epted by Canada on 931004		
222A WFWI	LI CN 31.0 R 39.8 M	253.1 70.76 km 41 06 25	5 3.80 8.98 28.10
Fort Wayne	IN Edgewater Radio, Inc.	73.1 43.97 Mi 85 11 46	5 123.0 373 BLH930312KD
222A WFWI.C	CP CN 31.0 R 39.8 M	253.1 70.76 km 41 06 29	5 2.70 9.06 28.15
Fort Wayne	IN Edgewater Radio, Inc.	73.1 43.97 Mi 85 11 46	5 147.0 398 BPH930416IA
223B WVKS	LI CN 69.0 R 2.6 M	68.1 71.61 km 41 31 5	5 50.00 5.87 64.41
Toledo	OH Noble Broadcast of Toledo,	248.1 44.50 Mi 83 35 3	7 146.0 340 BLH5928

I.F. RELATIONSHIPS: NONE FOUND

Nearest CH 6 Grade B =WLNSTV at 50.66 km, Distance= 154.67 Azimuth = .4 Deg. T.

^{*} Uses actual antenna radial HAAT and power toward reference

HOW TO READ THE FM COMPUTER PRINT-OUT

The computer print-out should be self-explanatory for the most part. The parameters of the station being checked, (reference station) are printed in the heading. The 60 dBu protected contour is predicted from the Commission's F(50-50) table, while the 40, 54, 80 and 100 dBu contours are interference contours derived from the Commission's F(50-10) table. Contour distances are in kilometers and are predicted using spline interpolation from data points identical to those published in Report No. RS 76-01 by Gary C. Kalagian. Critical contour distances are determined using the Commission's TVFMINT FORTRAN subroutine. When interference contour distances are less than 16 kilometers the F(50-50) tables are used. If signal contour distances are less than 1.6 km the free-space equation is used.

The column listed "* IN *" is the sum of the reference station's 60 dBu protected contour and the data file station's interference contour subtracted from the distance between the stations. (All distances are derived by the method detailed in Sec. 73.208 of the Rules and Regulations as amended in Docket 80-90.) Therefore, the column is a measure of incoming interference. Negative distances in this column indicate the presence of interference. Listed antenna heights are the average heights of eight standard radials as found in the Commission's records unless otherwise noted, in which case the specific antenna heights along the azimuths between the reference station and the database station are used and visa versa. The column labeled "* OUT *" shows the distance of kilometers of overlap or clearance between the reference station's interference contour and the database station's protected contour. Negative distance figures in this column indicate outgoing interference.

Under the "BEARING" column, the first row of numbers indicate the bearings from true north of the data base stations in relationship with the reference station, while the numbers in the second row indicate the reverse bearings from the database station to the reference station.

The columns labeled "INT" and "PRO" hold the distance in kilometers of the appropriate interference contour and the protected contour of a data base station.

For I.F. relationships the "IN" and "OUT" columns change their significance. The letter "R" stands for the minimum required distance in kilometers, while the letter "M" in the next column follows the available clear space separation in kilometers or "Margin". This same procedure is used for all Canadian and Mexican spacing. Minimum separation distances were taken from Sec 73.207 of the rules as amended. Canadian separation distances were derived from the "Canadian/American Working Agreement". The first three letters of the "TYPE" column identify the current F.C.C. status of the stations. The fourth letter will be a "D" or "Z" (Sec. 73.215) if the facility is directional. The fifth letter will be an E, H or V depending on the type of antenna polarization. The sixth letter will be a "Y" if the antenna uses beam tilt.

EX #EO, Fg # 3

DOUG VERNIER - BROADCAST CONSULTANT 01-31-1995

NEW Channel= 220 Max ERP = 6 kW RCAMSL = 307.85 M N. Lat = 411741 W. Lng = 842324

Protected 60 dBu

WQKO.C BPED910320MA

Channel = 220 Max ERP = 3 kW RCAMSL = 375 M N. Lat = 413859 W. Lng = 852112

Interfering 40 dBu

Azimuth (degrees)	ERP (kW)	HAAT (m)	Dist (km)	Azimuth (degrees)	ERP (kW)	TAAH (m)	Dist (km)	Actual (dBu)
260.0	2.130	94.5	21.8	126.1	3.000	80.8	73.2	39.7
261.0	2.044	94.5	21.6	125.7	3.000	80.9	73.2	39.7
262.0	1.960	94.5	21.3	125.4	3.000	81.0	72.9	39.8
263.0	1.877	94.5	21.1	125.1	3.000	81.1	72.8	39.8
264.0	1.797	94.5	20.9	124.7	3.000	81.2	72.8	39.8
265.0	1.718	94.5	20.7	124.4	3.000	81.3	72.7	39.9
266.0	1.641	94.5	20.4	124.1	3.000	81.4	72.7	39.9
267.0	1.565	94.5	20.2	123.7	3.000	81.5	72.6	39.9
268.0	1.492	94.5	20.0	123.4	3.000	81.6	72.6	39.9
269.0	1.420	94.5	19.7	123.1	3.000	81.7	72.6	39.9
270.0	1.350	94.5	19.5	122.7	3.000	81.8	72.6	39.9
271.0	1.313	94.5	19.3	122.5	3.000	81.8	72.6	39.9
272.0	1.276	94.5	19.2	122.2	3.000	81.9	72.5	40.0
273.0	1.239	94.5	19.1	121.9	3.000	82.0	72.5	40.0
274.0	1.204	94.5	18.9	121.6	3.000	82.0	72.4	40.0
275.0	1.168	94.5	18.8	121.3	3.000	82.1	72.4	40.0
276.0	1.134	94.5	18.6	121.0	3.000	82.1	72.4	40.0
277.0	1.099	94.5	18.5	120.7	3.000	82.1	72.4	40.0
278.0	1.066	94.5	18.3	120.5	3.000	82.2	72.4	40.0
279.0	1.033	94.5	18.2	120.2	3.000	82.2	72.4	40.0
280.0	1.000	94.5	18.0	119.9	3.000	82.2	72.5	40.0
281.0	0.978	94.5	17.9	119.6	3.000	82.3	72.5	40.0
282.0	0.956	94.5	17.8	119.4	3.000	82.3	72.5	40.0
283.0	0.934	94.5	17.7	119.1	3.000	82.3	72.5	40.0
284.0	0.913	94.5	17.6	118.9	3.000	82.4	72.5	40.0
285.0	0.892	94.5	17.5	118.6	3.000	82.4	72.5	40.0
286.0	0.871	94.5	17.4	118.4	3.000	82.4	72.6	40.0
287.0	0.850	94.5	17.2	118.1	3.000	82.5	72.6	40.0
288.0	0.830	94.5	17.1	117.9	3.000	82.5	72.7	39.9
289.0	0.810	94.5	17.0	117.6	3.000	82.5	72.7	39.9
290.0	0.790	94.5	16.9	117.4	3.000	82.5	72.8	39.9
291.0 292.0	0.778	94.5	16.8	117.1	3.000	82.6	72.8	39.9
292.0	0.765	94.5	16.7	116.9	3.000	82.6	72.9	39.9
	0.753	94.5	16.7	116.7	3.000	82.6	72.9	39.9
294.0 295.0	0.741	94.5	16.6	116.4	3.000	82.6	73.0	39.9
	0.729	94.5	16.5	116.2	3.000	82.6	73.1	39.8
296.0	0.717	94.5	16.4	116.0	3.000	82.5	73.1	39.8
297.0	0.705	94.5	16.4	115.7	3.000	82.4	73.2	39.8
298.0 299.0	0.693	94.5	16.3	115.5	3.000	82.4	73.3	39.8
300.0	0.682	94.5	16.2	115.3	3.000	82.2	73.4	39.7
301.0	0.670	94.5	16.1	115.1	3.000	82.1	73.5	39.7
302.0	0.682	94.5	16.2	114.9	3.000	81.9	73.4	39.7
302.0	0.693	94.5	16.3	114.6	3.000	81.7	73.4	39.7

								, -6
303.0	0.705	94.5	16.4	114.4	3.000	01.4	70.4	
304.0	0.717	94.5	16.4			81.4	73.4	39.7
305.0	0.729			114.2	3.000	81.1	73.3	39.7
		94.5	16.5	113.9	3.000	80.8	73.3	39.7
306.0	0.741	94.5	16.6	113.7	3.000	80.4	73.3	39.7
307.0	0.753	94.5	16.7	113.5	3.000	80.1	73.3	39.6
308.0	0.765	94.5	16.7	113.2	3.000	79.7	73.3	
309.0	0.778	94.5	16.8	113.0	3.000			39.6
310.0	0.790	94.5				79.3	73.3	39.6
311.0	0.810		16.9	112.8	3.000	78.9	73.3	39.6
312.0		94.5	17.0	112.5	3.000	78.5	73.2	39.6
	0.830	94.5	17.1	112.3	3.000	78.1	73.2	39.5
313.0	0.850	94.5	17.2	112.0	3.000	77.8	73.2	39.5
314.0	0.871	94.5	17.4	111.8	3.000	77.5	73.2	39.5
315.0	0.892	94.5	17.5	111.5	3.000	77.2	73.2	39.5
316.0	0.913	94.5	17.6	111.2	3.000			
317.0	0.934	94.5	17.7	111.0		76.9	73.3	39.5
318.0	0.956	94.5			3.000	76.7	73.3	39.4
319.0	0.978		17.8	110.7	3.000	76.5	73.3	39.4
320.0		94.5	17.9	110.5	3.000	76.4	73.4	39.4
	1.000	94.5	18.0	110.2	3.000	76.2	73.4	39.4
321.0	1.033	94.5	18.2	109.9	3.000	76.1	73.5	39.4
322.0	1.066	94.5	18.3	109.7	3.000	76.1	73.5	39.3
323.0	1.099	94.5	18.5	109.4	3.000	76.1	73.5	
324.0	1.134	94.5	18.6	109.1	3.000			39.3
325.0	1.168	94.5	18.8			76.1	73.6	39.3
326.0	1.204			108.8	3.000	76.1	73.7	39.3
327.0		94.5	18.9	108.6	3.000	76.2	73.7	39.3
	1.239	94.5	19.1	108.3	3.000	76.2	73.8	39.3
328.0	1.276	94.5	19.2	108.0	3.000	76.3	73.9	39.2
329.0	1.313	94.5	19.3	107.8	3.000	76.3	74.0	39.2
330.0	1.350	94.5	19.5	107.5	3.000	76.4	74.2	39.2
331.0	1.420	94.5	19.7	107.2	3.000	76.5	74.2	
332.0	1.492	94.5	20.0	106.8	3.000			39.2
333.0	1.565	94.5	20.2	106.5		76.6	74.3	39.2
334.0	1.641	94.5			3.000	76.8	74.4	39.2
335.0	1.718		20.4	106.2	3.000	76.9	74.4	39.1
336.0		94.5	20.7		3.000	77.0	74.6	39.1
336.0	1.797	94.5	20.9	105.6	3.000	77.1	74.7	39.1
337.0	1.877	94.5	21.1	105.3	3.000	77.2	74.8	39.0
338.0	1.960	94.5	21.3	105.0	3.000	77.3	75.0	39.0
339.0	2.044	94.5	21.6	104.6	3.000	77.4	75.2	
340.0	2.130	94.5	21.8	104.3	3.000			39.0
341.0	2.242	94.5	22.0	104.0		77.5	75.3	38.9
342.0	2.357	94.5			3.000	77.6	75.5	38.9
343.0	2.475		22.3	103.7	3.000	77.7	75.7	38.8
344.0		94.5	22.5	103.4	3.000	77.8	75.9	38.8
	2.596	94.5	22.8	103.1	3.000	77.9	76.1	38.7
345.0	2.719	94.5	23.0	102.8	3.000	78.0	76.3	38.7
346.0	2.846	94.5	23.3	102.4	3.000	78.0	76.6	38.6
347.0	2.975	94.5	23.5	102.2	3.000	78.1	76.8	38.6
348.0	3.107	94.5	23.8	101.9	3.000	78.2		
349.0	3.242	94.5	24.0	101.6			77.1	38.5
350.0	3.380	94.5			3.000	78.2	77.4	38.4
351.0			24.2	101.3	3.000	78.3	77.7	38.3
	3.558	94.5	24.5	101.0	3.000	78.3	78.0	38.3
352.0	3.740	94.5	24.8	100.7	3.000	78.3	78.3	38.2
353.0	3.926	94.5	25.0	100.4	3.000	78.4	78.6	38.1
354.0	4.117	94.5	25.3	100.1	3.000	78.4	79.0	38.0
355.0	4.313	94.5	25.6	99.8	3.000	78.6	79.3	
356.0	4.513	94.5	25.8	99.6	3.000			37.9
357.0	4.718	94.5	26.1	99.3		78.7	79.7	37.8
358.0	4.928	94.5			3.000	78.8	80.1	37.7
359.0	5.142		26.4	99.1	3.000	79.0	80.5	37.6
		94.5	26.6	98.8	3.000	79.1	80.9	37.5
0.0	5.360	94.5	26.9	98.6	3.000	79.2	81.3	37.4
1.0	5.422	94.5	26.9	98.5	3.000	79.3	81.8	37.3
2.0	5.485	94.5	27.0	98.4	3.000	79.3	82.2	37.2
				•	-			- · · ·

Exhibit #E9

CHANNEL-SIX EXHIBIT

Public Broadcasting Foundation of Northwest Ohio

January 1995

The proposed station is located 154.67 kilometers from the closest channel-six TV station, WLNSTV, East Lansing, Michigan. Under Section 73.525, the cutoff distance for FM stations on channel 220 is 154 kilometers, therefore no further consideration of protection to channel-six television need be given.

EXHIBIT # E10 R.F. RADIATION COMPLIANCE STATEMENT

Public Broadcasting Foundation of Northwest Ohio

Channel 220 - 6.0 kW DA Defiance, Ohio

January 1995

Based on the formulas expressed in the OST Bulletin, No. 65, Oct. 1985, "Evaluating Compliance with F.C.C. Specified Guidelines for Human Exposure to Radio Frequency Radiation", published by the Federal Communication's Office of Science and Technology, the proposed facility is predicted to produce a worst case maximum R.F. non-ionization radiation level at a position six feet above the tower base (head level, without regard to the actual vertical elevation field toward the nadir which will cause a reduction in the predicted value) of 46.86 microwatts per square centimeter. This is 4.7 percent of the maximum A.N.S.I. standard for the frequency in use.

There are no other radiators on the proposed tower.

The applicant will protect workers on the tower by either reducing ERP or terminating transmission.

Consequently, the proposed FM station will be in compliance with the Commission's rules regarding exposure to workers or the general public to levels of radio frequency radiation in excess of the American National Standard Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 KHz to 100 GHz. (ANSI 95.1-1982)

Doug Vernier